
J Comput Virol (2010) 6:239–259
DOI 10.1007/s11416-009-0125-5

ORIGINAL PAPER

Using the KBTA method for inferring computer and network
security alerts from time-stamped, raw system metrics

Asaf Shabtai · Yuval Fledel ·
Yuval Elovici · Yuval Shahar

Received: 3 January 2009 / Accepted: 23 June 2009 / Published online: 23 July 2009
© Springer-Verlag France 2009

Abstract In this study, we propose a new approach for
detecting previously unencountered instances of known clas-
ses of malicious software based on their temporal behav-
ior. In the proposed approach, time-stamped security data
are continuously monitored within the target computer sys-
tem or network and then processed by the knowledge-based
temporal abstraction (KBTA) methodology. Using KBTA,
continuously measured data (e.g., the number of running
processes) and events (e.g., installation of a software) are
integrated with a security-domain, temporal-abstraction
knowledge-base (i.e., a security ontology for abstracting
meaningful patterns from raw, time-oriented security data),
to create higher-level, time-oriented concepts and patterns,
also known as temporal abstractions. Automatically-gener-
ated temporal abstractions can be monitored to detect suspi-
cious temporal patterns. These patterns are compatible with a
set of predefined classes of malware as defined by a security
expert employing a set of time and value constraints. The new
approach was applied for detecting worm-related malware
using two different ontologies. Evaluation results demon-
strated the effectiveness of the new approach. The approach
can be used for detecting other types of malware by updating
the security ontology with new definitions of temporal
patterns.

A. Shabtai (B) · Y. Fledel · Y. Elovici · Y. Shahar
Deutsche Telekom Laboratories at Ben-Gurion University,
and Department of Information Systems Engineering,
Ben-Gurion University, 84105 Beer Sheba, Israel
e-mail: shabtaia@bgu.ac.il

Y. Fledel
e-mail: fledely@bgu.ac.il

Y. Elovici
e-mail: elovici@bgu.ac.il

Y. Shahar
e-mail: yshahar@bgu.ac.il

Keywords Knowledge-based systems ·
Temporal-abstraction · Computer and network
security · Host-based intrusion detection systems · Intelligent
visualization

1 Introduction

Today’s computer and telecommunication infrastructure
interconnects a heterogeneous collection of routers, servers
and end-user devices (i.e., desktops, laptops, cellular phones)
operating various kinds of software and services. By its open
and distributed nature, such an infrastructure is highly sus-
ceptible to malicious attacks. One common way of unleash-
ing such attacks is by employing malware (malicious
software) such as worms, viruses, Trojans or spyware [1,2]
which can cause great damage.

There is a plethora of solutions for tackling malware. Anti-
virus packages are a common method employed by end-user
devices and servers. However, since most antivirus software
detection capabilities depend on the existence of an updated
malware signature repository antivirus users are not pro-
tected whenever an attacker spreads a previously unencoun-
tered malware. Since the response time of antivirus vendors
may vary between several hours to several days to identify
the new malware, generate a signature, and update their cli-
ents’ signature database, hackers have a substantial window
of opportunity [3]. This problematic scenario calls for novel
methods to rapidly detect previously unencountered malware
(presumably belonging to some known malware class) even
before its signature is announced.

The main assumption in this study is that behavioral pat-
terns over time of a potential previously unencountered mal-
ware are an important factor in facilitating accurate detection.
Thus, inspecting behavioral changes in monitored devices or

123

240 A. Shabtai et al.

network traffic over time can help in detecting malware even
when its signature is unknown [4,5].

Detecting such malware usually involves processing and
inspecting an enormous volume of time-stamped raw mea-
surements generated by many data sources. Inspecting the
temporal behavior of the whole network, or of a specific
computer, in order to determine their status, also requires
context-sensitive interpretation of such accumulated data.
This high-level, context-sensitive, knowledge-based abstrac-
tion of time-oriented data is referred to as a temporal abstrac-
tion of the data [6].

To enable early detection of malware temporal patterns
we propose a comprehensive architecture and workflow
termed eTIME or Electronic Time-oriented Intelligent Mon-
itoring and Exploration. This detection approach combines
automatic monitoring capabilities, and support for manual,
interactive inspection and visual exploration of continuously
accumulated temporal, raw security data and abstractions.
eTIME architecture employs a Knowledge-Based Temporal
Abstraction (KBTA) framework for representing the security
domain knowledge and deriving temporal abstractions. The
KBTA method has been used successfully to support many
tasks, especially diagnostic or therapeutic decision support
[7] in the medical domain. In the security domain, a network,
computer or any other device can be regarded as a patient and
by inspecting temporal data related to a device or a network,
the security expert can infer whether it is infected or not.

The proposed architecture incorporates modules that facil-
itate: data collection from various data sources; continuous
inference of temporal abstractions; monitoring the derived
temporal-abstractions; manual, dynamic exploration of the
contents of security storage; and a knowledge-acquisition
and maintenance tool that enables a security expert to easily
add or modify temporal patterns in the knowledge base.

eTIME was integrated and evaluated in two scenarios. In
the first scenario eTIME was analyzed data collected from
end-user devices to identify potentially infected devices. In
the second scenario, eTIME analyzed traffic extracted from
an IP-compliant network to identify potentially infected files.

The rest of the paper is organized as follows: In Sect. 2, an
overview of related work is presented. Section 3 describes the
knowledge-based temporal abstraction method. Next, Sect. 4
introduces the proposed architecture and its components. In
Sect. 5 we present results from the evaluation of the pro-
posed framework, while Sect. 6 discusses the advantages of
the described architecture, and our current efforts to enhance
the architecture.

2 Related work

Enormous efforts are being made to provide effective defense
against malware. The academic research community is very

much engaged in investigating the problem while commer-
cial bodies are developing products that employ various
detection and filtering techniques bundled into anti-virus soft-
ware and intrusion detection or prevention systems (IDS/IPS).

There are two basic approaches for detecting and filter-
ing malware: signature-based detection (or misuse detec-
tion) and anomaly detection [8,9]. With the signature-based
approach, a signature of a known malware is synthesized and
the anti-virus or IDS signals once the signature is detected.
The signature might be in the form of a regular expression
representing the malicious software code, or in the form of an
attack pattern representing unauthorized behavior exploiting
known system or software vulnerabilities. In the case of sig-
nature-based detection, an updated repository of all known
malware signatures must be maintained and updated when-
ever a new malware is detected. This approach has several
drawbacks: (1) the size of the signature repository increases
steadily and the matching process against all potential sig-
natures is too lengthy; (2) When a signature database is
large, there is a chance that valid content will be incorrectly
matched to a malware signature; (3) Changing a single bit
in a malware’s code may require a new signature and thus
a single malware will produce multiple signatures. Despite
these drawbacks, this approach is commonly used due to its
simplicity and effectiveness in detecting known attacks with
low false-positive rates [10–12].

With the anomaly detection approach [13], the detection
system is trained with samples of normal behavior of a device,
and the IDS signals once an anomalous behavior is detected.
While this approach detects new attacks classified as exhibit-
ing anomalous behavior, it usually suffers from a high false-
positive detection rate that a security expert must handle
[11,12].

Some signature-based methods attempt to generate more
generalized malware signatures by learning and clustering
the behavior of malicious and benign software. For example,
Moskovitch et al. [14] focuses on the feasibility of accurately
detecting unknown worm activity in individual computers
using machine learning classifiers. Jacob et al. [11] present
a survey and taxonomy of a behavioral detection system.

Some academic studies have used temporal features to
represent the normal behavior (i.e., temporal behavior) [15]
of users, systems or networks. In [4], the user’s normal tem-
poral behavior is extracted as a Temporal-Probabilistic Tree
in which the nodes correspond to actions (such as reading
an e-mail) and the edges correspond to the transition from
one action to the next one. Temporal features such as action
duration and temporal relations between actions are stored in
the temporal-probabilistic tree nodes and edges. Each branch
of the tree represents one or more possible user behavioral
patterns.

Ghosh [16] used anomaly detection to represent a pro-
gram’s normal behavior as a frequency table-storing sequence

123

Using the KBTA method for inferring computer and network security alerts 241

of system calls. The work by [17–19] describes attack
patterns or normal behavior patterns using Allen’s temporal
relations [20] such as “before”, “after” and “meet” between
events (e.g., a login by user x should be followed by a logout).

A Markov chain was employed in [5] to model normal
temporal behavior of a computer as a sequence of computer-
related actions. Observed behavior is updated with a proba-
bility that supports the normal behavior based on the model
of the normal behavior. A low probability indicates a high
likelihood of abnormal behavior.

Li et al. [21] employ association-rules with time
granularity to define a normal behavior within different tem-
poral intervals (e.g., network traffic during weekend vs.
weekdays). The Temporal Logic approach was used in [22]
for detecting polymorphic malicious codes that exploit
buffer-overflow vulnerabilities.

Morin and Debar [23] used chronicle formalism to reduce
the number of alerts raised by multiple sensors (i.e., intru-
sion detection systems and logging tools) such as Snort and
Syslog and to improve the quality of the alerts by reducing
false alarms. Chronicle formalism, which is based on reified
temporal logic, was used for defining temporal patterns as a
set of events and time constraints. Several scenarios are pro-
vided in order to exemplify the benefits of the method: (1) a
buffer overflow false alarms is mitigated by tagging a suspi-
cious shellcode that appears during a normal ftp file transfer;
(2) multiple alerts related to the same port scan event are
aggregated into a single port scan chronicle; (3) reducing the
amount of alerts by aggregating recurrent alerts related to
the same attack is exemplified using the definition of the
Nimda worm chronicle; and (4) alerts from three differ-
ent sensors and describing three different events are aggre-
gated into a successful code execution attack on a host. As
described below, the KBTA method demonstrated in this
research can also assist in reducing the number of alerts by
using context-based interpretations.

Other formal languages such as Lambda [24], STATL [25]
and P-BEST [26] were also utilized for specifying attack
patterns and for alert correlation. In Lambda, attack scenar-
ios are described as steps representing the attacker’s actions.
STATL is a transition-based language describing attacks as
sequences of actions performed by an attacker. In P-BEST,
attacks are described using a production rule specification
language. Unlike the three previous languages, in chron-
icle formalism as well as in the proposed KBTA method,
time is fundamental and an integral part of the semantics of
patterns.

To date, a majority of state-of-the-art commercial malware
detection products operate in a signature-based mode. Few
of them attempt to complement signature-based detection
with anomaly detection techniques. Nevertheless, most of
the aforementioned solutions do not consider temporal fea-
tures as first-class-citizen when analyzing data captured from

networks or devices. Furthermore, these solutions usually
focus on a specific task or domain, such as analyzing and
detecting attacks in network traffic rather than providing an
overall solution that supports detection of malware using dif-
ferent types of data sources.

In this paper, we incorporate the KBTA method in order
to implement a time-aware malware detection system. Using
this system the security expert defines a security ontology
using standard terms from the security domain. As part of
the ontology, a security expert can define temporal patterns of
attack or normal behavior as a set of time and data constraints.
Such temporal patterns are fuzzy, behavioral signatures indi-
cating the temporal behavior of an attack versus valid activity.
The KBTA inference mechanisms mesh a continuous flow of
temporal raw security data with the security ontology to gen-
erate instances of higher level temporal abstractions. Such
temporal information can be monitored and used for issuing
alarms whenever an instance of a temporal pattern indicating
an attack is detected. In addition, the new architecture sup-
ports visual exploration using temporal queries to drill-down
and trace the source of an attack or identify new temporal pat-
terns indicating suspicious behavior. The following section
describes the KBTA method.

3 The KBTA method

Temporal-Abstraction (TA), a common and important Tem-
poral Reasoning (TR) task incorporates a computational
mechanism that integrates raw time-stamped data and knowl-
edge to extract and summarize meaningful interpretations
of the raw, time-stamped data. The Knowledge-Based
Temporal-Abstraction (KBTA) method [7] is a computational
framework for supporting the TA task. The KBTA was
proposed for an automated derivation of context-specific
interpretations and conclusions (i.e., temporal abstractions),
from the raw time-oriented data, by using a domain-spe-
cific knowledge base (e.g., a security ontology specialized
for abstraction of meaningful patterns from time-oriented
security data).

In general, the KBTA method consists of the input which
includes a set of time-stamped parameters (e.g., number of
FTP connections at each time-point) and events (e.g., key-
board or mouse activity) which create the necessary inter-
pretive context (e.g., “No User Activity” when the mouse
and keyboard are not used). The output comprises a set of
interval-based, context-specific parameters at the same or at
a higher level of abstraction and their respective values (e.g.,
a period of 5 h of a high number of FTP connections in which
no user activity was detected).

A knowledge engineer defines the domain knowledge
(e.g., security ontology) by means of five KBTA entities
and the relations between them. Five inference mechanisms

123

242 A. Shabtai et al.

Fig. 1 The KBTA framework

(Temporal Context Formation, Contemporaneous Abstrac-
tion, Temporal Inference, Temporal Interpolation and Tem-
poral Pattern Matching) are then applied in parallel to derive
the high level abstractions from the raw data [6]. Figure 1
illustrates the KBTA method. Time-stamped measurements
of primitive parameters and time-stamped events, as well
as predefined KBTA ontology, are the input to KBTA’s five
inference mechanisms. The outputs of the five inference
mechanisms are time-intervals of contexts, abstractions and
patterns that can be automatically monitored and stored for
later inspection and exploration.

3.1 Ontological entities

The KBTA ontology comprises five ontological entities that
define the domain ontology which is related to a subject in the
specific domain (e.g., personal computer, server, session or
file). The five ontological entities are: primitive parameters,
abstract parameters, contexts, events, and patterns.

Primitive parameters are raw measurable data collected
from different sensors (e.g., CPU usage, number of running
processes, the number of transmitted RST packets). Events
are raw data representing actions caused by an outside entity,
such as opening a browser, change in a registry or a software
installation. Contexts are the “state of affairs” of a monitored
subject (e.g., a computer). Contexts are induced dynamically,
usually by the existence of an event; they affect the interpre-
tation of parameters. The same dataset may be interpreted
differently within different contexts. For example, uploading
files using a FTP connection may be interpreted as normal
within the “User Activity” context and abnormal within the
“No User Activity” context (which might indicate the exis-
tence of a Trojan horse).

Abstract parameters are derived from one or more param-
eters (primitive or abstract). Part of the abstract parameter’s

knowledge is a classification function that maps the val-
ues of the “abstracted-from” parameters to the values of
the abstracted parameter. For example, “Memory Utiliza-
tion STATE” is an abstract parameter abstracted from the
primitive parameter “Memory Utilization” (the percentage
of memory used at each time point). A classification function
can map 0–10% memory utilization to a LOW state. A con-
text is required in order to derive an abstract parameter, and
within different contexts, the abstract parameter will have dif-
ferent classification functions. Consequently the same input
may result in different output values.

There are three types of abstract parameters: State, Gra-
dient, and Rate. These correspond to three types of abstrac-
tions, respectively. State abstractions map the values of the
“abstracted-from” parameters values to a “state-describing”
set of values (e.g., LOW memory utilization). Gradient
abstraction determines the direction of the change of val-
ues in a measured parameter (e.g., INCREASING number
of failed connections). Rate abstraction classifies the ampli-
tude of a rate of change of a selected parameter (e.g., FAST
changing number of modified exe files).

The objective is to derive for each abstraction the longest
possible time interval from the raw data with the same value.
A persistence function, which is also part of the abstract
parameter knowledge, determines the maximal gap between
two time-intervals that enables their concatenation into a
longer interval.

Patterns are a complex set of value and time constraints
defined over a set of parameters (primitive and abstract),
events, and contexts. There are two types of constraints: local
and global [27]. A local constraint is defined for one con-
cept over one time interval, for example, High CPU usage
state for more than 10 min. A global constraint defines the
pair-wise temporal relation between two intervals based on
Allen 13 temporal relations. The following is an example of a

123

Using the KBTA method for inferring computer and network security alerts 243

App installation.event Outgoing Traffic_STATE= High

≤5 mins ≥10 mins

Fig. 2 Example of a pattern with a global constraint (the event is fol-
lowed by a state abstraction within 5 min) and a local constraint (the
state abstraction is “High” for at least 10 min)

temporal pattern: “Application installation on a PC followed
within 5 min by HIGH outgoing network traffic for at least
10 min” (Fig. 2). There are two types of patterns: linear and
repeating. A linear pattern occurs only once. A repeating pat-
tern is a linear pattern that occurred two or more times (for
example, the above pattern occurring 4 times in 1 week).

Figure 3 shows an example of the temporal abstraction
process in the computer-networks security domain. It illus-
trates the derivation of an IP scan pattern that may indicate
that a computer worm in the computer is trying to infect
other computers. The input to the KBTA inference mech-
anisms consists of raw measurements of “System Context
Switches” and “TCP Connection Failures” at T1–T7, and the
“Connection Established” event, which generates the Inter-
net Connection context. Then, within the Internet Connection
context, a state of “VERY-HIGH System Context Switches”
is interpreted from the “System Context Switches” raw data.
An “INCREASING number of TCP Connection Failures”
is interpreted from the “TCP Connection Failures” raw data.
The IP scan pattern, which is derived from these two contem-
poraneous abstractions, indicates that the monitored com-
puter is infected with a worm.

The following table summarizes the five KBTA entity
types (input types: primitive parameter and event; and output
types: context, abstract parameter and pattern) and their
semantic relationships. For example, abstract parameter is

abstracted-from one or more other parameters (primitive or
abstract) and can be abstracted-into a pattern or other abstract
parameter. It can also generate a context (Table 1).

3.2 Inference mechanisms

In order to compute higher level abstractions from a given raw
data repository, KBTA uses five inference mechanisms: Tem-
poral Context Formation, Contemporaneous Abstraction,
Temporal Inference, Temporal Interpolation and Temporal
Pattern Matching [6].

The Temporal Context-Formation mechanism creates
interpretation-context intervals that enable the TA mecha-
nisms to create context-specific abstractions. This mecha-
nism requires context-induction knowledge such as what
concepts generate a context (including start, end and duration
of the context). In the example in Fig. 4, the installation event
generates the post-installation context interval. The start time
of the context is the end of the installation event and the end
of the context is 5 h after the end of the installation event.
A context can be created backwards (retrospect). This can
be very helpful in tracing the source of an attack. For exam-
ple, if we know that at some point of time a server was
attacked, we can generate an attack context from the time
it was discovered and backwards for a predetermined tem-
poral duration. This will involve re-inspecting historical data
and might create new abstractions that can potentially reveal
the source of the attack. As a case in point, software installed
from an external network (which is an event) that did not seem
suspicious before, might now look suspicious within the con-
text of the new attack.

The Contemporaneous Abstraction mechanism is a
mechanism for abstracting higher level abstractions (State,
Gradient or Rate) from one or more parameters occurring

Fig. 3 An example of a worm
pattern: raw data is plotted at the
bottom. Events and the
abstraction computed from the
data are plotted as intervals
above the data. Vertical lines an
event, bullet number of TCP
connection failures, black
triangle number of system
context switches, dashed lines a
context open interval, straight
lines an abstraction (derived
concept) interval

Time

TCP
Connection
Failures ()

T3 T4 T5 T6 T7

TCP Connection Failures.GRADIENT=[Increasing]

Worm Pattern

System Context Switches.STATE=[Very-High]

Connection Established.Event

Internet Connection.Context

T1 T2

System
Context

Switches ()

123

244 A. Shabtai et al.

Table 1 The KBTA entities and their semantic relationships

Entity (is-a) Children relation Parent relation Context relation Example

Primitive parameter – Abstracted-into Generated-contexts CPU usage
Abstract parameter Abstracted-from Abstracted-into Generated-contexts TCP connection failures gradient
Event Parts Part-of Generated-contexts Installation
Context Sub-context Super-context Generated-from Post installation context
Pattern Components Component-of Generated-contexts Worm pattern

Fig. 4 An example of the
Temporal Context Formation
mechanism. The closed context
interval (post installation) is
generated from an event
(installation), it starts right after
the event finished and lasts for
5 h

Fig. 5 The number of
executable files parameter points
(T1–T6) are abstracted into
abstraction points, over which a
High number of executables
state abstraction is interpreted,
by the contemporaneous
abstraction. These point
abstractions are first joined into
a High number of executable
abstraction intervals I1, I2, I3
and I4 by temporal
interpolation. Abstractions I1
and I2 are joined by temporal
inference into a longer
abstraction interval I5 as are I3
and I4 into I6. I5 and I6 are
joined into a High number of
executable abstraction intervals
I7 by the temporal interpolation

simultaneously. The time interval of the derived fact is the
intersection of the base parameter facts; the value is the result
of applying a classification function on the base parameter
facts. For example, in Fig. 5, the number of executable files
parameter time-point measurements is abstracted into the
Executable Number STATE abstraction (time-points facts as
well).

The Temporal Inference mechanism implements infer-
ences from similar-type propositions that hold for different
time intervals according to the following temporal semantic
properties: “concatenable”, “downward hereditary”,
“gestalt”, “solid” and “forward/backward diffusive”. The
semantic properties are part of the concept’s knowledge. For

example, in Fig. 5, by using the “concatenable” property,
the temporal inference can join similar-value abstractions
of the same parameter that hold for two meeting time inter-
vals (intervals I1 and I2 are joined to interval I5; interval I3

and I4 are joined to interval I6). Another property is “down-
ward-hereditary” which is useful in answering queries. This
property states whether one can conclude that if a predicate is
true over some time interval then it is true over any contained
interval.

The Temporal Interpolation mechanism bridges gaps
between temporally disjoint point- or interval-based facts
of a similar-type (but potentially different values) to create
longer intervals (e.g., joining two temporally disjoint high

123

Using the KBTA method for inferring computer and network security alerts 245

CPU usage intervals into a longer interval). This mechanism
requires temporal semantic knowledge (is the concept con-
catenable?) and interpolation knowledge that can tell, for
example, what is the maximal gap that enables concatenat-
ing two point-based facts. Figure 5 demonstrates the joining
of point propositions (e.g. joining two time-points facts into
I1) and interval propositions (e.g. joining I5 and I6 into I7).

The Temporal Pattern-Matching mechanism, which cre-
ates complex temporal pattern intervals, requires pattern clas-
sification knowledge about the components of the pattern
such as its value and time constraints. Figure 3 presents an
example of the pattern-matching process. A worm pattern is
created if, during an Internet connection, there is an increase
in the number of TCP connection failures together with a
high state of system context switches.

All in all, eTIME employs the KBTA method to integrate
raw, time-oriented security data from various data sources
with knowledge acquired according to the KBTA method for
the purpose of deriving meaningful information (i.e., con-
texts, abstractions and patterns) that can be explored and
monitored. The following section describes the eTIME archi-
tecture.

4 The eTIME architecture

4.1 Goals

The specific goals of eTIME are to:

(a) Integrate large amounts of security-related data with
predefined, context-sensitive, and meaningful patterns
of malware.

(b) Implement automated monitoring of continuous,
time-oriented data streams by employing real-time,
knowledge-based abstractions and creating predefined
alerts based on predefined concepts in the knowledge
base.

(c) Visually and dynamically explore a security-data repos-
itory by means of on-the-fly integration with domain-
specific knowledge in order to identify and add new
meaningful patterns to the knowledge base.

(d) Implement capabilities for monitoring and querying
multiple subjects.

(e) Assist security experts to acquire and maintain
temporal-abstraction knowledge.

The expected benefits of the eTIME architecture include:
early detection of potentially new malware compatible with
predefined temporal patterns; rapid adaptation of the service
to new malware through a knowledge acquisition tool; faster
identification of new malware patterns by supporting a secu-
rity officer to visually and interactively explore the contents
of a security-data storage; and providing concise, meaningful

summaries of large amounts of time-oriented security data
in terms familiar to security experts.

4.2 General architecture and modules

eTIME’s architecture supports two main modes of operation:
(1) an automated, continuous mode for monitoring, recog-
nition and detection of previously unencountered malware
instances compatible with known classes of malware; and
(2) an interactive, human-mediated mode for dynamically
exploring data in a security-related repository in order to
identify new temporal patterns that characterize such mal-
ware threats.

To facilitate the run-time monitoring and exploration tasks,
eTIME has to be initiated. The setup phase involves three
essential tasks: (1) a security expert must define the KBTA
security ontology; (2) connectivity with the data-sources (sta-
tic storage and data stream sources) should be established;
and (3) a security expert must determine which patterns to
monitor and the relevant conditions that should create alerts.

The KBTA-based architecture integrates the following
modules and components (Fig. 6):

Data Sources. A set of time-oriented security data sources
(these may be static databases or data stream sources).

Knowledge-Bases. A set of one or more knowledge-bases
tailored to the process of detecting meaningful temporal pat-
terns of high-level, abstracted concepts (not just raw data).

KB Access Module. An access-point to the temporal-
abstraction knowledge-base. This module updates and
retrieves elements from the security ontology maintained by
the knowledge base.

Temporal-Abstraction Module. A temporal-abstraction,
computational process that implements the KBTA’s five infer-
ence mechanisms and creates abstract temporal patterns such
as malware patterns by integrating data and knowledge.

Continuous Monitoring Engine. An automatic mechanism
to continuously monitor the output of the temporal-
abstraction process and issue alerts whenever a malware
pattern is detected.

Data Storage. Stores all raw data records (i.e., primitive
parameters and events) and all the temporal abstractions that
the temporal-abstraction process produces.

Visual Monitoring Module. A visualization interface that
can visually notify a security officer about new alerts issued
by the Continuous Monitoring Engine.

Visual Exploration Module. A visualization interface for
exploring multiple security-oriented records and their corre-
lations over time. This module also supports an interactive
exploratory mode that facilitates identification of new mal-
ware.

Query Module. Provides answers to temporal queries sub-
mitted by the use of the Visual Exploration Module.

123

246 A. Shabtai et al.

Fig. 6 eTIME general
architecture and modules.

Data
Sources

Controller

Security
Expert

Security
Expert

Security
Officer

Knowledge
Bases

KB Access
Module

Data storage

Continuous
Monitoring

Engine

Temporal
Abstraction

Module

 Continuous Monitoring & Querying

Query
Module

Persistence Services

User Applications

Knowledge
Acquisition

Tool

Visual
Exploration

Module

Visual
Monitoring

Module

KB Manager

Raw Time-Oriented
Security Data

Start_Up
j 0 2

j 2 4
j 1 4

CPU
j 0 2

j 2 4
j 1 4

Start_Up
j 0 2

j 2 4
j 1 4

CPU
j 0 2

j 2 4
j 1 4

Start_Up
j 0 2

j 2 4
j 1 4

CPU
j 0 2

j 2 4
j 1 4

Start_Up
j 0 2

j 2 4
j 1 4

CPU
j 0 2

j 2 4
j 1 4

Start_Up
j 0 2

j 2 4
j 1 4

CPU
j 0 2

j 2 4
j 1 4

Start_Up
j 0 2

j 2 4
j 1 4

CPU
j 0 2

j 2 4
j 1 4

Knowledge Acquisition Tool. An application used by a
security expert for maintaining the KBTA security ontology
(i.e., adding or updating concepts in the ontology).

The aforementioned architecture supports tasks during the
setup phase and the run-time as well as in the monitoring and
exploration phases. During the setup phase the security expert
uses the Knowledge Acquisition Tool to define the security
KBTA-based ontology (i.e., all concepts and the relationships
between them) which is stored in the Knowledge-Base. The
security ontology is then used at run-time by the Temporal-
Abstraction Module to continuously create and store abstrac-
tions. The output of the Temporal-Abstraction Module is
monitored by the Continuous Monitoring Engine. When an
important instance of a pre-defined pattern is detected (e.g.,
worm behavior pattern) an alert is issued [28].

Once an alert has been issued, it is necessary to drill down
and explore the data in order to pinpoint the root cause of
the alert and to trace the source of the attack for forensic
purposes. The exploration task is supported by the Visual
Exploration Tool and the Query Module [29].

4.3 Creating and monitoring temporal abstractions

The goal of the Temporal Abstraction Module and the
Continuous Monitoring Engine is to provide an integrated
environment for continuously abstracting and monitoring
temporal security data. Such an environment facilitates the
detection of important patterns indicating the existence of a
malware and the necessity of notifying the security officer.

Temporal-abstraction monitoring systems usually tend to
use a query-response approach in which a query is invoked
periodically. For each query, the relevant knowledge and data
are first retrieved, and then the abstractions are generated.
The query is only executed after these steps have been imple-
mented. This process is computationally intensive since the
query re-computes many of the abstractions. Moreover, if a
query is not invoked frequently enough, it might not provide
effective real-time monitoring.

The periodic querying approach ignores the fact that con-
tinuously arriving data usually affects only a few high-level
abstractions (temporal redundancy property). This means that
only a small portion of the previously created abstractions
might be affected by recent raw data. Consequently there
is no need to re-compute all the earlier abstractions [30].
The periodic querying approach also ignores the fact that the
same data are required for creation of multiple abstractions,
which might be used to define an effective way to compute
the abstraction.

Based on these observations, it is clear that the periodic
query approach is unsuitable for monitoring raw data in the
security domain. In the proposed architecture, we imple-
mented an Incremental Temporal-Abstraction process, in
which the abstraction applies to the newly arrived data by
ensuring that previously generated abstractions are updated
only when new contradictory data arrived (truth maintenance)
and that every generated abstraction is retained until updated
or removed by the truth maintenance (persistence mainte-
nance). The incremental approach supports a more efficient
monitoring process since most of the abstractions are

123

Using the KBTA method for inferring computer and network security alerts 247

AbstrRun 1

A1

D1

AbstrRun 2

A2

D2DataFeed 2

D1Δ

...

...

...

Ai -1Legend: - state AbstrRun i - process
- abstracted

into
- input/output to/from

process

Fig. 7 This schema demonstrates the iterations of the I-KBTA Method. The first iteration of the abstraction process (AbstrRun1) is initiated by
the initial raw data feed D1. AbstrRun1 abstracts D1 into A1. Consequent iterations of the abstraction process are based on the previously created
abstractions

Knowledge
 Hub

Orchestrator

Activation Bus

SQL DB
Alerts

Specification

Storage Primitives Events
Monitoring

Engine

Raw Data

Contexts
Rate

Abstractions
Gradient

Abstractions
State

Abstractions
Temporal
Patterns

Alerts Knowledge

Fig. 8 Internal design of the continuous temporal abstraction and monitoring modules

pre-computed and there is no need to generate abstract con-
cepts on-the-fly.

The incremental temporal abstraction extends the KBTA
method to the Incremental-KBTA [30] as illustrated in Fig. 7.
The first iteration of the abstraction process (AbstrRun1)

is initiated by the initial raw data feed D1 (i.e., AbstrRun1

abstracts D1 into A1). Consequent iterations of the abstrac-
tion process are based on the previously created abstractions;
thus, new abstractions are the result of updating abstrac-
tions generated in the previous step with new raw data (i.e.
AbstrRun2 abstracts D2 into A2 by updating A1).

I-KBTA supports: (1) incremental computation of tem-
poral abstractions from continuously arriving raw data; (2)
adjustability which facilitates extending the computational
framework to support new temporal-abstraction tasks not
currently defined; and (3) a scalable distributed computing
architecture capable of handling a large quantity of data.

Monitoring is applied on temporal abstractions created
by the Temporal-Abstraction Module when new raw data is

available. The new raw data and abstractions are stored in the
data storage, and the new/updated abstractions are sent to the
Continuous Monitoring Engine for monitoring. Continuous
monitoring specifies monitoring conditions for the attributes
of the monitored instances (e.g., value, duration, beginning,
ending, type etc.). Monitoring rules can be specified for a
group of subjects as well (e.g., more than 20% of infected
computers). Alerts are induced by satisfying the monitoring
conditions.

As shown in Fig. 8, the computation and monitoring frame-
work was designed to support the specifications above. Each
abstraction type (e.g., state, rate, and temporal pattern) is
computed (incrementally) by dedicated and distributed com-
putational units that can operate concurrently. The computa-
tional units are connected to the bus. Communication
between the computational units is managed by an orches-
trator while the bus serves as a transport layer. The computa-
tional units use the knowledge stored in the knowledge hub,
for the abstraction task.

123

248 A. Shabtai et al.

4.4 Query and exploration

The Visual Exploration Module (depicted in Fig. 6) com-
plements the monitoring task by enabling interactive visual
exploration of a repository of time-oriented security data. The
exploration process is query driven. A user who interactively
submits temporal queries can later visualize and explore raw
data and abstractions which are received in response.

The derived temporal abstractions can be visualized and
explored with a tool especially developed and evaluated for
this purpose [31]. Termed VISITORS (Visualization and
Exploration of Multiple Time-Oriented Records) the tool can
be used by the security expert to submit time-oriented que-
ries based on predefined concepts in the security ontology.
The Query Module uses the data storage to answer the query.

VISITORS supports two views of security data. The indi-
vidual subject view is used to explore the data of one subject
at a time, such as all worm pattern instances on a specific PC
over the previous 10 days. The aggregated, multiple-subject
view is implemented for various security tasks, such as cop-
ing with distributed attacks (i.e., DDoS), when an aggregated,
simultaneous view of a group of subjects is more effective
than a view of each subject independently. Thus, this view
enables visualization and exploration of a group of subjects
at various levels of abstraction (i.e., aggregation), by capi-
talizing on the use of eTIME’s temporal abstractions mech-
anisms. For example, exploration of all PCs on which an
installation event has occurred, followed by high outgoing
network traffic within five consecutive minutes.

Figures 9, 10 show multiple-subject visualizations.
Figure 9 presents a visualization of a single-concept over
time. The panel visualizes data of a single raw parameter
(CPU usage) over time for a group of computers. The hori-
zontal axis represents the timeline (February 2006) and the
vertical axis represents the concept’s possible values in terms
of percentages. The points’ insight and their level of satura-
tion enable the viewer to judge the average amount of items
belonging to each area. Minimal values are indicated by the
bottom blue line and maximal values of a group by the top
red line.

Figure 10 visualizes the distribution of an abstract param-
eter (TCP Connection Failures STATE) for a group of com-
puters. In this view, the horizontal axis represents the timeline
(May 2009) and the vertical axis represents the distribution of
the values of the derived parameter. Each value is presented
by a color (from bottom to top: “low” blue, “normal” green
and “high” red). The user is presented with the proportions of
the number of computers in each category for specific time
intervals (e.g., on May 3 16:01, 46.67% of the computers had
the value “High”).

The VISITORS user interface is also based on the secu-
rity ontology, which improves data exploration and enables
navigation of semantically-related raw and abstract concepts.
For example, the user can visually explore a virus pattern that
the KBTA inference mechanism derived and see all relevant
data from which the pattern was derived (assuming, of course,
that the virus pattern definition was previously defined by the
security expert as a part of the security ontology).

Fig. 9 Visualization of raw parameter for a group of computers

Fig. 10 Visualization of the distribution of abstract parameter

123

Using the KBTA method for inferring computer and network security alerts 249

We distinguish between three types of queries. The Get
Subjects query retrieves the list of subjects from a selected
database which satisfies: a set of non-temporal constraints
(e.g., IP addresses range); time and value, knowledge-based
constraints (define bound constraints on the value, duration
and start/end point of a concept as well as definition of
time and values pair-wise interrelations between concepts);
and statistical constraints (to explore subjects having spe-
cific values within a given statistical range of threshold val-
ues.) For example a user can construct the following complex
query: “Select all the computers and servers in the manage-
ment department whose CPU usage STATE was abstracted
as “Very-High” for more than 80% of the time for at least
one hour after Windows patching.”

The second type of query is the Get Temporal Interval.For
example, “Select all time-intervals over which, after an Instal-
lation event, a computer was infected by a virus within the
subsequent hour.” This results in a set of time intervals when
certain portions of the subjects have a specific value within
a predefined range.

Given a list of subjects and a list of interesting time inter-
vals, the Get Concept Data query retrieves the time-oriented
data (raw or abstract) of a selected concept. For example,
“What was the value of the IP Scan State during January
17–21 for computers #1–#10.”

5 eTIME evaluation

To evaluate the proposed eTIME framework we developed
an evaluation environment that included: (1) a knowledge
acquisition framework consisting of a front-end application
used by a domain expert for entering domain knowledge, the
knowledge-base and the Knowledge Access Module which
is a mediator for accessing the knowledge-base [32]; (2) an
Incremental-KBTA framework to provide continuous and
incremental computation and monitoring of temporal
abstractions; (3) a Visual Exploration tool (VISITORS) [31];
and (4) a Query Module.

eTIME was tested in two scenarios involving two differ-
ent security ontologies. The first scenario involves collecting
various parameters and events from an end-user machine,
such as a cellular phone or a PC, and monitoring patterns
of malicious behavior. In the second scenario, eTIME was
integrated into a network monitoring framework and used
parameters and events related to the propagation of files in
the network.

5.1 End-user device scenario

eTIME was integrated within a centralized Host-Based Intru-
sion Detection System (HIDS). Termed NetworkProtect, the
system was developed as part of our security research and

involves a framework to detect malware on end-user devices
by combining distributed monitoring and central analysis
capabilities. The framework relies on lightweight agents that
continuously sample features from an end-user device and
transmit those features to a central server for analysis using
various machine learning and temporal reasoning techniques.

The framework comprises three main components: Agent,
Server Complex and Control Center (Console). The agent
constantly operates on end-user devices and logs primitive
parameters (e.g., CPU consumption, number of TCP connec-
tion failures/sec) and events (e.g., keyboard pressing, email
attachment activation, browser opening). The agent must be
setup with identification information (in order to be identified
by the system) and parameters such as sampling frequency
and sampled feature list. Once an agent is activated, follow-
ing system identification, it continuously samples the various
features on the device which are relevant in detecting suspi-
cious behavior.

Logged data are sent via a secure channel to the server
complex. The server complex runs several processing and
detection services that process raw data sampled from the
agents, and determine the infection state of an agent. These
detection services include classification algorithms (i.e., arti-
ficial neural networks, Bayesian networks, and decision trees)
as well as the eTIME framework. An evaluation of mali-
cious behavior that was detected using machine learning
techniques within the NetworkProtect framework is
presented in [33,34].

The Control Center (Fig. 11) provides an updated over-
view of each monitored device by presenting information
about particular devices, including their current and historic
infection states, as well as aggregated statistics for multiple
devices.

The integration of the eTIME framework within the Net-
workProtect system is depicted in Fig. 12. The agents that
are installed on devices such as PCs, laptops, servers and
smartphones, communicate with the External Server which
handles registration and logging requests as well as provides
detection services. Samples of raw data extracted by the
agents are also forwarded by the External Server to eTIME’s
Temporal Abstraction Computation and Monitoring server
which invokes the Incremental-KBTA process. It continu-
ously receives new data records and employs the security
ontology (provided by the knowledge-base) in order to create
or update the temporal abstractions. Updates or newly cre-
ated abstractions are then stored in the data storage. Issued
alerts detected by the Temporal Abstraction server are sent
to the Internal Server which handles all the connections with
the NetworkProtect Consoles (Fig. 11).

For our evaluation, we used an agent that was developed
for PCs running Windows XP and which monitors every
t seconds (according to the agent’s settings) various
features the Windows Performance application monitors.

123

250 A. Shabtai et al.

Fig. 11 The NetworkProtect
Console for monitoring end-user
devices

Fig. 12 The integration of
eTIME with the NetworkProtect
Host-based Intrusion Detection
System

The agent monitored more than 100 raw parameters and
events, including some that were used to define basic abstrac-
tions and complex patterns. The features appeared within
the categories: Internet Control Message Protocol(ICMP),
Internet Protocol (IP), Memory, Network Interface, Physical
Disk, Processes, Processor, System, Transport Control Pro-
tocol (TCP), Threads and User Datagram Protocol (UDP).
We installed the agent on different interconnected comput-
ers, both real and virtual, which were monitored, and later
deliberately infected with worms.

The computer network environment we created consisted
of seven computers containing heterogenic hardware and a
server simulating the Internet. We used two types of com-
puter configurations, both operated using MS Windows XP.
The two PC configurations were: Pentium III 800 MHz CPU,
bus speed 133 MHz and memory 512 Mb, and Pentium IV
3 GHz CPU, bus speed 800 MHz and a memory of 1 GB.
We also connected to this network environment two power-
ful VMWare servers to create six virtual PCs running with
Windows XP, two web servers and two DHCP servers.

123

Using the KBTA method for inferring computer and network security alerts 251

Fig. 13 Exploring the worm pattern data of a single computer in the VISITORS system

We injected worms into the network environment, and
then monitored various computer features in each of the
infected and uninfected computers. Using virtual PCs
enabled us to manually infect a computer and rapidly revert
it to its clean state. The real computers were used to validate
that the behavior of a malware inside a virtual computer was
similar to that on a real one.

The first step in the evaluation was to define and load the
security knowledge base according to the KBTA ontology.
For the knowledge acquisition task, we used the knowledge
acquisition tool. The ontology was stored in the knowledge-
base server (Fig. 12). Examples of some of the concepts in
the ontology are:

• CPU-usage (primitive parameter measured in % and
which can be any value from 0 to 100)

• Software installation (event)
• Software installation context generated by a software

installation event; starts when the installation is complete
and ends after 5 h

• The TCP connection failures Gradient; derived from the
primitive parameter TCP connection failures within the
context of the Internet connection mode; it requires addi-
tional information such as the mapping function and per-
sistence table.

We activated six different worms: DebormY, DoomjuiceB,
PadobotKorgoX, SasserD, DaberA and SlackorA (see
Appendix A) on different computers. Using the exploration
tool and by examining the measured parameters, we were
able to identify a temporal pattern that indicated the exis-
tence of a worm. This pattern was previously presented in
Fig. 3. By defining this simple worm pattern we were able to
detect, at a very early stage, the activation of a worm on a PC
running on Windows XP.

Figure 13 depicts the detection of a worm (DabberA) using
the exploration interface. The worm was detected (the first
graph from the top) by a simple pattern in which, within
the Internet-Connection-Mode context, the amount of TCP
connection failures increased (a gradient abstraction shown
at the second graph from the top). At the same time there
was a “Very-High” state of System context switches (a state
abstraction shown in the fourth graph from the top). The third
and fifth graphs from the top of Fig. 13 depict raw data of TCP
connection failures (number of times TCP connections have
failed) and the System context switches (number of switches
from one thread to another made by the processor per second)
measured on the computer. The “TCP connection failure Gra-
dient” abstraction and the “System context switches State”
abstraction are the result of the temporal abstraction mech-
anisms which derived these abstractions from the collected

123

252 A. Shabtai et al.

raw data based on functional classification knowledge, tem-
poral semantic knowledge and temporal interpolation knowl-
edge. The results are time intervals in which the raw data
was classified into “Increasing”, “Same” or “Decreasing” in
the case of the gradient abstraction and “Normal”, “High”
and “Very-High” in the case of the state abstraction. Zoom-
ing into one of the samples opens a tool-tip with additional
information. One can observe that the worm was activated at
07:55:30 as the TCP connection failures immediately starts
to increase; a few seconds later, the number of system con-
texts switches becomes very high.

Following is the worm pattern definition in CAPSUL lan-
guage [27]:

Linear Pattern: Worm behavior pattern
Context: Internet connection mode
Linear Components:

Parameter Component:
 TCP connection failure GRADIENT

Abstracted From:
 TCP connection failure

Local Constraints:
 value = INCREASING
 duration > 2min

Parameter Component:
 System context switches STATE

Abstracted From:
 System context switches

Local Constraints:
 value = VERY-HIGH
 duration > 2min

Global Constraints:
Quantitative Gap Constraint:

 System context switches STATE ≤ 1min
 AFTER TCP connection failure GRADIENT

Output Value of Pattern:
 Value Function: value = Worm Behavior

In order to demonstrate that a single worm pattern can
detect different threat instances, we show the results of mon-
itoring the behavior of a PC that was infected with the Dab-
berA (Fig. 14b) and Sasser.C (Fig. 14c). Activating these two
worms in our evaluation environment resulted in the deri-
vation of a worm pattern. This required fine tuning of the
“TCP Connection Failure Gradient” and the “System Con-
text Switches State” abstractions’ mapping functions. It can
be seen that the DabberA is more aggressive than Sasser.C;
immediately after the activation of the DabberA worm, an
increasing “TCP Connection Failure Gradient” and “High
System Context Switched State” were derived concurrently
(Fig. 14b).

In order to check for false alarms (i.e., detecting the worm
pattern in benign activity) we monitored a clean (uninfected)
computer while performing various background activities
which should affect the “TCP Connection Failures” and the
“System Context Switches” parameters. These activities
include browsing the Internet and downloading files, using

MS messenger and Word and Excel applications. Figure 14a
shows the raw and abstract data derived from the uninfected
computer for a 15-min period. Since the “TCP Connection
Failure Gradient” that was derived was the “Same” (i.e., no
significant change), no worm pattern was derived. We sim-
ulated the same activities while activating the DabberA and
Sasser.C worms and the results indicated that the background
activity did not affect the derivation of the worm pattern.

Following is another example of a temporal pattern defini-
tion using the KBTA ontology. A malware injection pattern
refers to suspicious behavior which is associated with the
installation of unwanted, potentially malicious, software on
a computer. The pattern is composed of three components:
“Software Installation Event”, “Auto files number Gradient”
and “Executable files number Gradient”. Within the Inter-
net connection mode context (e.g., browsing the Internet),
if there an increasing amount of Auto files (i.e., the sum of
the number of files in the registry_Run and registry_Shell,
which are executed on restart by the operating system and
the number of files in the StartUp folder), and concurrently
there is an increase in the amount of Executable files, without
any observed installation process, then the malware injection
pattern is invoked.

Linear Pattern: Malware injection pattern
Context: Internet connection mode
Linear Components:

Parameter Component:
 Auto files number GRADIENT

Abstracted From:
 Auto files number

Local Constraints:
 value = INCREASING
 duration > 1hour

Parameter Component:
 Executable files number GRADIENT

Abstracted From:
 Executable files number

Local Constraints:
 value = INCREASING
 duration > 1hour

Event Component:
 Software installation
 Local Constraints:
 NOT EXIST
 Global Constraints:

Quantitative Gap Constraint:
 Auto files number GRADIENT DURING
 Executable files number GRADIENT

Output Value of Pattern:
 Value Function: value = Malware Injection

The port scanning pattern indicates that an attacker is pos-
sibly using the TCP/IP protocol behavior for revealing open
ports on the machine. The pattern is invoked whenever there
is an increasing number of “sent RST packets” within the
Internet connection mode context.

123

Using the KBTA method for inferring computer and network security alerts 253

Linear Pattern: Port scanning pattern
Context: Internet connection mode
Linear Components:

Parameter Component:
 IP RST packets GRADIENT

Abstracted From:
 IP RST packets

Local Constraints:
 value = INCREASING
 duration > 5min

Output Value of Pattern:
Value Function: value = Port Scanning

5.2 Monitoring files in network traffic

eTIME was incorporated into a system that monitors param-
eters and events related to the appearances of files in a net-
work’s strategic locations and attempts to detect new
instances of malware compatible with a set of predefined
malware classes (i.e., in this version of the security ontology,
the monitored subjects are files).

Each file extracted from the network’s traffic (by a sniff-
ing device) is forwarded to a main processing module with

additional meta-data such as the number of times the files
were captured in the past, the specific location, the source
and destination IP addresses, source and destination ports,
etc. These features along with additional information such
as the number of times the file has been captured before in
the whole network (by all the deployed sniffing devices),
and the number of distinct sniffers which captured the file
before, are sent to eTIME. eTIME’s Incremental Temporal
Abstraction Module applies, the pre-defined knowledge on
this time-stamped raw data to create alerts whenever a sus-
picious pattern is identified.

A preliminary ontology included the following patterns:
fast spreading worm, DDoS attack, slow spreading worm
(possibly infection with zombies) and local scanning worm.
For example, the fast spreading worm pattern is extracted
when a high number of appearances of a file are detected
and the rate of appearance increases very-fast along with a
high number of unique destination IPs, where “high number
of appearances” and “very-fast increase of appearances” are
both high-level concepts from the computer-network’s secu-
rity domain. Following is the fast spreading worm pattern
definition in CAPSUL language:

Linear Pattern: Fast spreading Worm
Context: Network capture
Linear Components:

Parameter Component:
 Number of appearances STATE

Abstracted From:
 Number of appearances

Local Constraints:
 value = HIGH
 duration > 2min

Linear Components:
Parameter Component:

 Number of appearances GRADIENT
Abstracted From:

 Number of appearances
Local Constraints:

 value = INCREASING
Linear Components:

Parameter Component:
 Number of appearances RATE

Abstracted From:
 Number of appearances

Local Constraints:
 value = VERY-FAST

Linear Components:
Parameter Component:

 Number of unique destination IPs STATE
Abstracted From:

 Number of unique destination IPs
Local Constraints:

 value = HIGH
Global Constraints:

Quantitative Gap Constraint:
 Number of appearances STATE DURING Number of appearances GRADIENT
 Number of appearances STATE DURING Number of appearances RATE
 Number of appearances STATE DURING Number of unique destination IPs STATE

Output Value of Pattern:
Value Function: value = Fast Propagation

123

254 A. Shabtai et al.

Fig. 14 Exploring the raw and
abstract data of uninfected and
infected computers, while
background user activity is
performed, in the VISITORS
system. a Monitoring an
uninfected computer b
Monitoring a computer infected
with DabberA worm.
c Monitoring a computer
infected with Sasser.C worm

In this scenario in order to simulate Internet traffic in a
large network with multiple sniffing devices, we integrated
the simulation tool1 presented in [35,36] with the eTIME

1 http://dtlabs.bgu.ac.il/edare23.

system. This simulation tool (depicted in Fig. 15) was pro-
posed as an innovative decision support system (DSS) for
placement of Intrusion Detection and Prevention Systems in
large-scale communication networks. This tool is intended
to support network security personnel in optimizing the

123

http://dtlabs.bgu.ac.il/edare23

Using the KBTA method for inferring computer and network security alerts 255

Fig. 15 The network simulation tool for simulating the propagation of various malware or benign files in the network as well as deployed sniffing
devices

placement and configuration of malware filtering and moni-
toring devices within network service provider (NSP) infra-
structures and enterprise communication networks. The
simulation tool meshes innovative and state-of-the-art ele-
ments from graph theory, epidemic modeling, and network
simulation in order to define the communication patterns
induced by network users (thereby establishing a virtual over-
lay network). Parallel attack models enable a user to define
various interdependent network attacks such as: Internet
worms, Trojan horses, DoS attacks, and others. The simula-
tion tool incorporates a set of deployment strategies
(employing graph-theoretic centrality measures) in order to
intelligently place filtering and monitoring devices. The
tool’s dedicated network simulator evaluates the various
deployments.

The simulation tool can be used to: (1) define networks
of any size and type; (2) simulate sniffing devices deployed
in the network; and (3) simulate network traffic that may
contain both malicious and benign files. When a file passes
through a simulated sniffing device, it is sent to a central
processing system.

To simulate the propagation of a malware, we used a ran-
domly generated network which contained two NSPs. Every

NSP was composed of three POPs (points of presence) with
a total of 88 core routers and 60 access routers (20 of which
represent corporate customers connected directly to the core)
and total of 8,000 machines. Figure 15 presents a screenshot
of the network. Since we assumed that only one NSP is pro-
tecting its customers (the left NSP in Fig. 15), we deployed
10 monitoring devices to capture files in network traffic for
forwarding to the central analysis system.

We simulated the propagation models of: the Slammer
worm (Internet worm) using the parameters from [37]; the
“Love Letter” (eMail worm) using the parameters from [38]
and of the P2P worm using the parameters from [39]. Due
to space constraints, we provide only the results of simu-
lating an Internet worm pattern. For simulating an Internet
worm (e.g., the Slammer worm) we configured the following
parameters:

• scan rate—the number of probes per simulation time unit
• address space—the optional address space
• vulnerable population size.

In Table 2 we present the number of infected comput-
ers after 10 simulation time units and the number of worm

123

256 A. Shabtai et al.

Table 2 The infection rate of an
Internet worm using the
simulation tool

Scan rate (probes/time unit) 5 10

Vulnerable population size (%)

15 Infected: 95 machines (4%) Infected: 285 machines (12%)

Seen by sniffers: 420 instances Seen by sniffers: 1,200 instances

37 Infected: 420 machines (7%) Infected: 2,900 machines (49%)

Seen by sniffers: 1,200 instances Seen by sniffers: 8,000 instances

Fig. 16 Exploring the data of four worm scenarios using the query and exploration tool. (a) Vulnerable population 37%, scan rate 10 probes; (b)
vulnerable population 37%, scan rate 5 probes; (c) vulnerable population 15%, scan rate 10 probes; (d) vulnerable population 15%, scan rate 5
probes

instances that were captured by the 10 sniffing devices
deployed on the protected NSP. The scan rate was set at 5
probes or 10 probes, and the vulnerable population size at 15
or 37%. The scanning address space was set at 216.

Figure 16 depicts the data of a single malicious file prop-
agating in the simulated network for each of the four sce-
narios presented in Table 2. The data (raw and abstract) is
used to derive the worm spreading pattern. The first graph
from the top of each scenario depicts the fast worm spread-
ing pattern. The number of appearances (detected by the 10
sniffing devices) is presented in the 3rd graph from the top;
the gradient and rate of the number of appearances are shown

in the 4th and 5th graphs respectively. The Destination IP
gradient is shown in the last graph from the top.

These graphs show the influence of the scan rate and
vulnerable population size parameters in deriving the fast-
spreading worm pattern. We can see that the vulnerable pop-
ulation size parameter has a higher impact on the pattern
detection.

6 Summary and conclusions

This paper presents the KBTA method as a new approach for
detecting malware by analyzing temporal security data from

123

Using the KBTA method for inferring computer and network security alerts 257

several sources on multiple subjects. The data is analyzed in
order to identify new malware compatible with predefined
temporal patterns specified at a high level of abstraction by a
security expert. The eTIME framework, that implements the
KBTA method, is capable of automatically and continuously
creating new abstractions from a continuous flow of raw data.
These abstractions are automatically monitored to alert the
appropriate user (or another process) whenever a suspicious
pattern indicate the possible presence of a malware.

The new approach can also quickly adapt to new
malware classes through an interactive, knowledge-based
visual-exploration tool. This tool enables a security expert to
recognize new meaningful temporal patterns, coupled with
a knowledge-acquisition tool that enables human experts to
modify the malware knowledge base. In addition, the KBTA-
based architecture supports acquiring, in a flexible manner,
multiple security-related ontologies such as a PC ontology,
server ontology, cellular phones/pocket PC ontology, file
propagation ontology. Thus, the suggested approach is also
useful for detecting malware on a variety of devices and oper-
ating systems.

The KBTA method provides concise, meaningful summa-
ries of large amounts of temporal security data in terms famil-
iar to security experts. By supporting automatic monitoring
and intelligent, interactive visual exploration, it rapidly iden-
tifies new malware patterns. In addition, KBTA defines mal-
ware patterns in a fuzzy fashion as a set of constraints, rather
than as a hard-coded signature for each and every known
malware. Consequently, it facilitates detection of instances
of malware even when they have not been encountered
before.

We implemented a prototype that is capable of creating,
monitoring and exploring temporal abstractions and patterns.
A central server rather than an end-user device processes the
data. Agents installed on end-user devices collected the raw
security data. The prototype demonstrated the capability of
our method in defining and evaluating new temporal patterns
which might indicate the existence of malware such as a
worm.

Although we successfully defined additional patterns of
other types of malware such as viruses and Trojans we
encountered several problems when evaluating the system’s
effective on these types of malware. First, the patterns that
were defined were derived from parameters that are very
difficult to extract from the system, such as the number of
modified exe/dll files per minute or the number of exe files
on the computer. Second, unlike the medical domain, it is
very difficult to define abstractions and patterns in the secu-
rity domain. To solve this difficulty we introduced an auto-
matic temporal data mining (TDM) process on the abstracted
data in order to automatically detect new temporal patterns.
This approach will assist a security expert in detecting new

unknown malware classes and update the security ontology
so it can be used for detecting new types of malware.

The automatic mining of patterns can be applied on
another version of the agent that was implemented. This
type of agent collects measurements and the events of system
calls by the Operating System. Since system calls are the pri-
mary method for affecting a system, they can be very useful
for detecting patterns of unwanted behavior. However, it is
a very difficult task for a domain expert to define patterns
using these low-level parameters and events and therefore
automatic mining of patterns is essential.

In a second scenario, eTIME was tested with an ontology
that assists in detecting patterns of worm-related malware
propagating in networks.

The eTIME framework potentially supports both misuse
detection and anomaly detection. Anomaly detection can be
supported by defining temporal patterns of normal behav-
ior (for example, normal behavior of network connections),
and identifying time-intervals in which the normal behav-
ior patterns are not derived as proposed in [4]. This sce-
nario was not evaluated. However, as mentioned before, we
believe that a temporal data mining process employed on
raw and abstracted data will define patterns for both nor-
mal and malicious behavior. A parallel research that deals
with such Temporal Data Mining framework is being per-
formed and new results will hopefully be presented in the
future.

Two additional major advantages of the system that we
identified are: (1) the system can assist in summarizing low-
level monitored parameters that arrive at high rate by apply-
ing simple abstractions (State, Rate, and Gradient) and (2)
the system can help in integrating alerts from other sensors as
primitive parameters and “smoothing” the alerts by applying
the temporal-abstraction process and notifying the user only
if the alert instances persist. Meshing alerts from multiple
sensors reduces the amounts of false alarms that a system
administrator needs to cope with those alerts that persist for
a substantial time interval.

Acknowledgments This research is supported by Deutsche Telecom
AG.

Appendix A: Worms description

1. W32.Deborm.Y (DebormY)

This worm scans the local network and tries to propagate to
other computers on the local network. It attempts to share
C$ (C drive) using the accounts of the administrator, owner
or guest (it succeeds if a certain account does not have a
password).

123

258 A. Shabtai et al.

2. W32.HLLW.Doomjuice.B (DoomJuiceB)

This worm randomly generates IP addresses and attempts to
propagate to computers by using the backdoor opened by the
worm W32.Mydoom.A@mm. It tries to connect to comput-
ers using TCP port 3127. If the connection is established it
uses the backdoor to infect the computer. It is programmed
to add itself to the registry so that it is loaded on startup.

3. W32.Korgo.X (PadobotKorgoX)

This worm generates random IP addresses and exploits the
LSASS Buffer overrun vulnerability using TCP port 445. If it
succeeds in taking over a computer, the newly infected com-
puter will send a request for downloading the worm from the
infecting computer by using a random TCP port.

4. W32.Sasser.D (Sasser.C)

This worm spreads by generating random IP addresses using
128 threads. The IP addresses are generated so that 48% of
them should be close to the current computer by using the
current computer’s IP and 52% of them are generated com-
pletely at random. It connects to the remote computer using
TCP port 445. If the connection is established, a remote shell
is opened. The remote shell is used to connect to the infected
computer’s FTP server and transfer the worm.

5. Daber.A (Daber.A)

This worm scans networks for random IP addresses,
searching for victim computers that have the ftp compo-
nent of the Sasser worm installed on port 5554. When the
worm finds a suitable victim machine, it sends a vulnera-
bility exploit to it to infect the system. It then launches the
command shell on port 8967. It also installs a backdoor on
port 9898 to receive external commands.

6. Slackor.A (Slackor.A)

When the Slackor worm is run, it sends a SYN TCP packet to
randomly generate IP addresses through port 445 to search
for the systems using Server Message Block (SMB). It then
attempts to connect to the Windows default shares on these
systems by using the username and password pair that it car-
ries. If successful, it tries to copy the worm to the system.

References

1. Kienzle, D.M., Elder, M.C.: Internet WORMS: past, present, and
future: recent worms: a survey and trends. In: Proceedings of the
ACM Workshop on Rapid Malcode (2003)

2. Heidari, M.: Malicious codes in depth. Security docs. http://www.
securitydocs.com/pdf/2742.PDF (2004)

3. Dikinson, J.: The new anti-virus formula. 2005. http://www.
ironport.com/pdf/ironport_new_anti-virus_formula.pdf

4. Seleznyov, A., Mazhelis, O.: Learning temporal patterns for anom-
aly intrusion detection. In: Proceedings of the 17th ACM Sympo-
sium on Applied Computing (2002)

5. Ye, N.: A Markov chain of temporal behavior for anomaly detec-
tion. In: Workshop on Information Assurance and Security (2000)

6. Shahar, Y.: A framework for knowledge-based temporal abstrac-
tion. Artif. Intell. 90(1–2), 79–133 (1997)

7. Shahar, Y., Musen, M.A.: Knowledge-based temporal abstraction
in clinical domains. Artif. Intell. Med. 8(3), 267–298 (1996)

8. Jones A.K., Sielken R.S.: Computer System Intrusion Detec-
tion: A Survey. Technical Report, Computer Science Department,
University of Virginia, USA (2000)

9. Axelsson, S.: Intrusion Detection Systems: A Survey and Tax-
onomy. Technical Report, Department of Computer Engineering,
Chalmers University, Sweden (2000)

10. Christodorescu, M., Jha, S.: Testing malware detectors. ACM
SIGSOFT Softw. Eng. Notes 29(4), 34–44 (2004)

11. Jacob, G., Debar, H., Filiol, E.: Behavioral detection of mal-
ware: from a survey towards an established taxonomy. J. Comput.
Virol. 4, 251–266 (2008)

12. Idika, N., Mathur, A.P.: A Survey of Malware Detection Tech-
niques. Technical Report, Department of Computer Science, Pur-
due University, USA (2007)

13. Estevez-Tapiador, J.M. et al.: Anomaly detection methods in wired
networks: a survey and taxonomy. Comput. Commun. 27(16),
1569–1584 (2004)

14. Moskovitch, R., Elovici, Y., Rokach, L.: Detection of unknown
computer worms based on behavioral classification of the
host. Comput. Stat. Data. Anal. 52(9), 4544–4566 (2008)

15. Lane, T., Brodley, C.E.: Temporal sequence learning and data
reduction for anomaly detection. ACM Trans. Inf. Syst.
Secur. 2(3), 295–331 (1999)

16. Ghosh, A.K., Schwartzbard, A., Schatz, M.: Using program behav-
ior profiles for intrusion detection. In: Proceedings of the 1st USE-
NIX Workshop on Intrusion Detection and Network Monitoring
(1999)

17. Naldurg, P. et al.: A temporal logic based framework for intrusion
detection. In: Proceedings of the 24th Formal Techniques for Net-
worked and Distributed Systems International Conference (2004)

18. Ning, P., Jajodia, S., Wang, X.S.: Abstraction-based intrusion
detection in distributed environments. ACM Trans. Inf. Syst.
Secur. 4(4), 407–452 (2001)

19. Kohout, L.J., Yasinsac, A., McDuffie, E.: Activity profiles for intru-
sion detection. In: North American Fuzzy Information Processing
Society-Fuzzy Logic and the Internet (2002)

20. Allen, J.F.: Maintaining knowledge about temporal intervals.
Commun. ACM 26(11), 832–843 (1983)

21. Li, Y. et al.: Enhancing profiles for anomaly detection using time
granularities. J Comput. Secur. 10(1–2), 137–157 (2002)

22. Talbi, M., Mejry, M., Bouhoula, A.: Specification and evaluation
of polymorphic shellcode properties using a new temporal logic.
J. Comput. Virol. (2008)

23. Morin, B., Debar, H.: Correlation of intrusion symptoms: an
application of chronicles. In: Proceedings Recent Advances in
Intrusion Detection (RAID) Symposium (2003)

24. Cuppens, F., Miege, A.: Alert correlation in a cooperative intrusion
detection framework. In: Proceedings of the 2002 IEEE Sympo-
sium on Security and Privacy (2002)

25. Eckmann, S.T., Vigna, G., Kemmerer, R.A.: STATL:
an attack language for state-based intrusion detection. J. Comput.
Secur. 10(1), 71–104 (2002)

123

http://www.securitydocs.com/pdf/2742.PDF
http://www.securitydocs.com/pdf/2742.PDF
http://www.ironport.com/pdf/ironport_new_anti-virus_formula.pdf
http://www.ironport.com/pdf/ironport_new_anti-virus_formula.pdf

Using the KBTA method for inferring computer and network security alerts 259

26. Lindqvist, U., Porras, P.A.: Detecting computer and network mis-
use through the production-based expert system toolset (P-BEST).
In: Proceedings of the 1999 IEEE Symposium on Security and
Privacy (1999)

27. Chakravarty, S., Shahar, Y.: CAPSUL: a constraint-based spec-
ification of repeating patterns in time-oriented data. Ann. Math.
AI 30(1–4), 3–22 (2000)

28. Shabtai, A., Shahar, Y., Elovici, Y.: Monitoring for malware using
a temporal-abstraction knowledge base. In: Proceedings of the
8th International Symposium on System and Information Security
(2006)

29. Shabtai, A., Shahar, Y., Elovici, Y.: Using the knowledge-based
temporal-abstraction (KBTA) method for detection of electronic
threats. In: Proceedings of the 5th European Conference on Infor-
mation Warfare and Security (2006)

30. Spokoiny, A., Shahar, Y.: An active database architecture for
knowledge-based incremental abstraction of complex concepts
from continuously arriving time-oriented raw data. J. Intell. Inf.
Syst. 28(3), 199–231 (2007)

31. Shabtai A., Klimov D., Shahar Y., Elovici Y.: An intelligent,
interactive tool for exploration and visualization of time-oriented
security data. In: Proceedings of the 3rd International Workshop
on Visualization for Computer Security (2006)

32. Shabtai, A., Atlas, M., Shahar, Y., Elovici, Y.: Evaluation of a tem-
poral-abstraction knowledge acquisition tool in the network secu-
rity domain. In: Proceedings of the 4th International Conference
on Knowledge Capture (2007)

33. Stopel, D., Moskovitch, R., Boger, Z., Shahar, Y., Elovici, Y.: Using
artificial neural networks to detect unknown computer worms.
J. Neural Comput. Appl. (2009)

34. Moskovitch, R., et al.: Host based intrusion detection using
machine learning. IEEE Inf. Secur. Inf. (2007)

35. Puzis, R., Tubi, M., Elovici, Y., Glezer, C.: A decision support sys-
tem for placement of intrusion detection and prevention devices in
large-scale networks. Submitted to ACM Transactions on Informa-
tion and System Security (TISSEC)

36. Tubi, M., Puzis, R., Elovici, Y.: Deployment of DNIDS in social
networks. ISI (2007)

37. Moore, D. et al.: Inside the slammer worm. IEEE Secur. Priv. (2003)
38. CERT 2000. Love letter worm. http://www.cert.org/advisories/

CA-2000-04.html
39. Thommes, R., Coates, M.: Epidemiological modeling of peer-to-

peer viruses and pollution. In: Proceedings of IEEE Infocom (2006)

123

http://www.cert.org/advisories/CA-2000-04.html
http://www.cert.org/advisories/CA-2000-04.html

	Using the KBTA method for inferring computer and network security alerts from time-stamped, raw system metrics
	Abstract
	1 Introduction
	2 Related work
	3 The KBTA method
	3.1 Ontological entities
	3.2 Inference mechanisms

	4 The eTIME architecture
	4.1 Goals
	4.2 General architecture and modules
	4.3 Creating and monitoring temporal abstractions
	4.4 Query and exploration

	5 eTIME evaluation
	5.1 End-user device scenario
	5.2 Monitoring files in network traffic

	6 Summary and conclusions
	Acknowledgments
	Appendix A: Worms description
	1. W32.Deborm.Y (DebormY)
	2. W32.HLLW.Doomjuice.B (DoomJuiceB)
	3. W32.Korgo.X (PadobotKorgoX)
	4. W32.Sasser.D (Sasser.C)
	5. Daber.A (Daber.A)
	6. Slackor.A (Slackor.A)

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

